
Full description of the project Invariants and methods of applied topology

Main topics of the project

1. Variants of the Bourgin�Yang version of the Borsuk�Ulam theorem and their applications to com-

binatorics and equipartition problems.

2. A study of topological complexity of spaces with the presence of actions of �nite groups.

3. A construction of linearization and spectrum of homomorphism of residually nilpotent group.

4. Geometrically de�ned linear spaces used to obtain geometrically distinct solutions of variational

problems with O(N)-symmetry.

Research project objectives

The general aim of the project is to develop theory of certain topological invariants used in the �eld of

applied topology and studied in the previous work of investigators, though completely new directions are

also included. The central thematic stream is concentrated in the two �rst topics, where we intend to use

the experience of the principal investigator gained through his past work on the Borsuk�Ulam theorem

and the Lusternik�Schnirelmann category theory. In particular, we aim to improve and generalize recent

versions of the Bourgin�Yang theorem (a variant of the celebrated Borsuk�Ulam theorem) and, in e�ect,

obtain new applications to combinatorics and equipartition problems. Continuation of investigation of

the notion of topological complexity of spaces with a given group of symmetries consitutes the other

direction in this part.

Another, more tentative, subject is the construction and examination of properties of notions of

�linearization� and �spectrum� of a homomorphism of a �nitely generated residually nilpotent group.

Such a notion was already de�ned and studied for homomorphisms of torsion free nilpotent groups as it

appears naturally in the study of maps between nilmanifolds. It would encode dynamical properties of a

homomorphism, e.g. properties of a map of an aspherical space.

Finally, we plan to obtain a detailed description of functional spaces which are determined by sub-

groups of O(N) and give series of geometrically distinct solutions of nonlinear variational problems with

O(N)-symmetry.

A more detailed description of speci�c objectives follows.

1. Variants of the Bourgin�Yang version of the Borsuk�Ulam theorem and their applications

to combinatorics and equipartition problems. The aims of this part of the project are:

i) The classical version of the Borsuk�Ulam theorem states that there does not exist a continuous

map f : S(Rn) → S(Rm) of spheres which satis�es f(−x) = −f(x), provided that n > m. On the

other hand, the Bourgin�Yang theorem (also in its classical statement) says that if f : S(Rn)→ Rm

is a map satisfying f(−x) = −f(x), then dim f−1(0) ≥ n−m− 1. In particular, if n > m then the

dimension of this set is ≥ 0 , thus it is nonempty, and the conclusion of the Borsuk�Uam theorem

follows.
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There are numerous and far reaching generalizations of the Borsuk�Ulam theorem. On the other

hand, there are not nearly as many papers on the Bourgin�Yang theorem. Furthermore, to the best

of our knowledge, those which exist rely on having a sphere as the (co)domain of the equivariant

map in question ([Mar-Mat-San1], [Mar-Mat-San2]) or treat a very speci�c situation ([Mun3], [Vol2],

[Vol3]).

Our �rst objective is to complete the details of a general theorem of the Bourgin�Yang type for

groups G = Zpk , (Zp)k, Sk. We already have a thorough discussion and a preliminary version

of results available ([Bl-Mar-Si1]), though certain estimates (especially when G = (Zp)k) are still

far from satisfactory. Our formulation of this theorem is analogous to the most general version of

the Borsuk�Ulam theorem due to M. Clapp and D. Puppe [Cl-Pu2]. More precisely, we merely

assume that X is compact and (n − 1)-connected (or, even more generally, (n − 1)-acyclic with

respect to a properly chosen �eld of coe�cients) and Y is of �nite dimension, say m (respectively, of

cohomological dimension m). Then, given a G-equivariant map f : X → Y and a closed G-invariant

subspace A ⊆ Y , we estimate the dimension of the set f−1(A). Our result states that, roughly

speaking, dim f−1(A) ≥ φ(n) − ψ(m), where φ and ψ are certain monotonic functions depending

on G and the structure of actions on X and Y . This readily extends the results of [Mar-Mat-San1]

and [Mar-Mat-San2]. We believe, however, that both φ and ψ we use right now are suboptimal and

can be chosen so that the obtained estimates are signi�cantly better.

One major technical point regarding this objective which is worth pointing out is the use of equiv-

ariant K-theory K∗G as a tool. This enables us to carry out �ner calculations compared to classically

used Borel cohomology theory. On the other hand, there were some related signi�cant obstacles,

since algebraic gradation in K∗G-theory is not naturally related to gradation coming from �ltration

by skeletons, and also K∗G-theory is functorial only with respect to proper maps. These problems

have been overcame in [Mar-Mat-San1] and [Bl-Mar-Si1], respectively. Interesingly enough, if we

specify our work for G = Zpk to the situation considered by Munkholm [Mun3], who used singular

homology and obstruction theory as main tools, the results only partially overlap, and not at all

in an obvious manner (both in range and numeric values). A minor goal is to make a detailed

comparison with Munkholm's theorems. A similar comparison with Volovikov's results [Vol2] for

G = (Zp)k is also in order.

ii) If G = (Zp)k or G = Tk, the Borsuk�Ulam theorem says that the necessary condition for the

existence of a G-map S(V )→ S(W ), where V and W are orthogonal G-representations such that

V G = WG = {0}, is dimV H ≤ dimWH for any closed subgroup H ⊆ G ([Mar1], [Cl-Pu2]). If

G = Zpk , this condition assumes the form dimV H

pk−1 ≤ dimWH ([Bar1]). (For p > 2 we take �dim�

to mean the complex dimension). It is straightforward to prove that this condition is su�cient for

G = (Zp)k, ([Mar3]), and it was recently shown that this is also the case for G = Tk ([Bl-Mar-Si2]).

The related result for G = Zpk constitutes the task (1.ii) of this project and appears to be essentially
more di�cult.

iii) This task is closely related to the previous one. We plan to tackle an analogous problem for

an arbitrary �nite cyclic group G = Zk. In this case the necessary condition of divisibility of

Euler classes e(V ) | e(W ) in cohomology H∗(BG;Z), provided that e(V ) 6= 0 ([Mar3]), should be
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strengthened in order to be su�cient. There are some similar or partial results in this direction.

If G = (Zp)k and EGN denotes the N -th skeleton of the classifying space EG of G, then the

Euler class e(W ) ∈ H∗(BG;Z) is the unique obstruction for the existence of a G-equivariant map

EGN → S(W ) [Sar]. Similar thing happens if V is a free G-representation of a cyclic group G = Zk
and k either an odd number or is of the form 2l, where l is odd [Izy-Mar].

iv) If follows from Carlson's proof of the Segal conjecture Â(G) ∼= π∗G(BG) and from Laitinen's theorem

on p-adic completion of the Burnside ring of a p-group G that if V is an in�nite-dimensional G-

representation andW is a �nite-dimensionalG-representation withWG = {0}, then aG-equivariant
map S(V )→ S(W ) cannot exist ([Bar2]). However, for an arbitrary p-group G there is no known

e�ective information on how big the di�erence dimW − dimV can be. We will attempt to �nd an

integer n0 (depending on G and W ) with the property that if dimV > n0, then a G-equivariant

map S(V ) → S(W ) does not exist. Restating what was mentioned in 1.ii) in this language yields

n0 = dimW if G = (Zp)k, and n0 = dimW
pk−1 if G = Zpk . Our working conjecture is as follows:

n0 = min dimW
|H| , where and H  G a cyclic subgroup and |H| denotes the order of H.

v) While the Borsuk�Ulam theorem ensures the existence of a solution of equipartition problems (both

in the classical combinatorial setting [Mat], as well as in other theories [Bl-Zie], [Do-Ka], [Sab]),

the Bourgin�Yang theorem gives qualitative information about the size of the set of all possible

solutions. Up until now only a very special variant of the Bougin�Yang theorem (with G = (Zp)k,
V a free G-representation and W a regular one, albeit with �removed� �xed points) was used in

combinatorial applications. It was studied for k = 1 in [Mun3] and �nally proved in [Vol2]. An

interpretation of our versions of the Bourgin�Yang theorem in the context of equipartition problems

is another (admittedly, less precisely) posed objective of the project.

vi) The last topic of this thematic group is the completion of classi�cation of all compact Lie groups

with the �absolute� Borsuk�Ulam property: if, given a pair V , W of orthogonal G-representations

such that V G = WG = {0}, there exists a G-map S(V ) → S(W ), then dimV ≤ dimW . If we

additionally assume that W ⊆ V is a sub-representation, then every (compact Lie) group G with

such a property is of the form of extension e → T ⊂ G → Γ → e, where T is a torus and Γ is

a p-group. The converse also holds [Bar23]. Without this additional assumption, every group G

with this property is of the form e → T ⊂ G → Γ → e, where the order of each element of Γ is

equal to p. On the other hand, any group which is the extension e→ T ⊂ G→ (Zp)k → e has this

stronger Borsuk�Ulam property ([Mar2]). We aim to �ll in this gap by classifying groups having

the second Borsuk�Ulam property. Our conjecture is as follows: this is the class of extensions of

the form e→ T ⊂ G→ (Zp)k → e.

2. A study of topological complexity of spaces with the presence of actions of �nite groups.

This thematic group consists of:

i) In order to measure complexity of the process of motion planning of a mechanical system (a robot),

M. Farber [Fa1], [Fa2], [Fa3] introduced the notion of topological complexity, TC(X), of a topolo-

gical space X. This is de�ned as the minimal number of domains of continuity whose union covers
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X×X, where �domain of continuity� is taken to mean an open subset U ⊆ X×X such that a motion

planning algorithm exists over U (i.e. there exists a continuous function s : U → PX such that

s(x, y)(0) = x and s(x, y)(1) = y for any pair (x, y) ∈ U). Topologically, this corresponds to the

�varc category of the path �bration PX → X ×X. Due to its applications in topological robotics

� its knowledge is of practical use when designing optimal motion planners � and close relation

to Lusternik�Schnirelmann category, topological complexity has attracted plenty of attention in

recent years.

Mechanical systems often come equipped with symmetries visible in their con�guration spaces, thus

it not surprising that there have been attempts at weaving symmetries into the de�nition of topo-

logical complexity. We propose to study properties of these �symmetric� invariants. In fact, there

are at least four di�erent approaches, depending on how one decides to interpret the additional

structure. One can rigidify planners ([Co-Gr]), locally simplify them at the cost of increasing the

global amount of domains of continuity ([Lu-Mar]), simplify motion planners globally ([Bª-Kal2]),

or �stabilize� them by twisting via X ×G EG ([Dr1]).

Our studies will include computation of these invariants for various G-spaces ([Bl-Lü-Zi], [Bª-Kal1],

[Bª-Kal2], [Dr1], [Fr-Pa], [Go-Gra-To-Xi]), as well as relating them to classical invariants of trans-

formation group theory ([Bª-Kal1]). We will also consider modifying the existing de�nitions to

determine an invariant which would be e�ectively computable and the most adequate from the

point of view of applications.

ii) The second objective in this group constitutes a more speci�c task: we intend to determine a

construction of the G-Reeb graph RG(f) [Re], [Ma-Sae],[Sha], i.e. a graph associated with a

smooth G-invariant function on a G-manifold X. Originally, the Reeb graph was de�ned as a

quotient X/∼R, where x ∼R y if f(x) = f(y) = c and x, y are in the same connected component

of f−1(c), and typically is represented as a graph embedded into X. The Reeb graph describes

the relation between topology of X and the orbits of a gradient �eld which joins critical points of

f . This notion is extensively used in visualization problems (cf. [Bi-Gi-Sp-Fa]). In a recent paper

[Kal-Mar-Si], investigators of the project introduced (in the general case) a construction of this

graph as a subcomplex of X. This led to properties known to hold before for Morse functions only

([Co-Ed-Ha-Na]).

We plan to adapt the construction to the situation when an action of a �nite group G on X is given

and f is a G-invariant function. We expect to obtain a graph with an action of G which permutes

vertices and edges. It is worth pointing out that a direct adaptation of the original de�nition of

the Reeb graph results in an object with a very poor action of G (in fact, very often trivial), and

so it preserves no interesting information.

3. A construction of linearization and spectrum of homomorphism of residually nilpotent

group.

i)-ii) Here we aim to introduce the notion of linearization of a homomorphism φ : G → G of a �nitely

generated residually nilpotent group G and, later on, describe its properties. The main idea is to

use the sequence An(φ) of homomorphisms induced by φ on factors of the lower central tower.
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The idea of such a construction arose from the study of linearization of homomorphisms of �nitely

generated torsion free nilpotent groups, which appears in the geometric setting of periodic points

(see [Je-Mar] for more references) or, correspondingly, entropy ([Mar-Prz1]) of a map X → X on

a compact nilmanifold X. Purely formally, this construction can be carried out for any group, but

it has interesting (or required) properties only for residually nilpotent groups. At the moment this

task is posed in general terms only, but it should be thought of as an attempt at studying group

homomorphisms by means of geometric methods.

4. Geometrically de�ned linear spaces used to obtain geometrically distinct solutions of

variational problems with O(N)-symmetry. We plan to show that a recently established theorem of

the principal investigator [Mar4] on a construction and number of mutually linearly independent subspaces

of functional spaces of functions on RN (orDN ) can be applied to various variational problems with O(N)-

symmetry. Moreover, a certain principle of composition of these subspaces can be used to �nd subspaces

consisting of functions with a large set of zeroes (the nodal set). The mentioned theorem says that with

every partition π(N) of a natural number N into summands with a non-trivial Weyl group W
(
π(N)

)
(this means that there are at least two summands which are equal) we can associate a functional subspace

which consists functions changing sign and whose zero sets contain a union of hyperplanes of �xed points

of re�ections (transpositions) ofW (π(N)). By specifying families of special partitions and using a re�ned

version of an argument from [Kr-Mar], we have shown that the number of mutually orthogonal subspaces

of this type has the rate of growth in N not smaller than P
(
[N/4]

)
∼ 1

N
√
3
eπ
√
N/6, where P (N) denotes

the number of possible partitions of N (i.e. the number of ways of writing N as a sum of positive

integers, where the order of addends is not signi�cant). In e�ect, it is now known this rate of growth is

exponential, which improves the previous logarithmic
[
log2

N+2
3

]
([Ba-Wil]) and linear

[
N−3
2

]
+ (−1)N

([Kr-Mar]) rates.

Another direction of research is the corresponding study of vector-valued functions (in, say, Rd). In
order to de�ne this kind of subspaces one ought to use d̃ | d-dimensional irreducible representations of

the group W (π(N)) ⊂ Σ(N) of permutations. It is worth pointing out that in the case when we do not

want to obtain many mutually linearly independent subspaces, there is no do need to increase N , but

make use of �nite subgroups of O(N) generated by re�ections instead, e.g. the Coxeter groups.

Signi�cance of the project

1. Variants of the Bourgin�Yang version of the Borsuk�Ulam theorem and their applica-

tions to combinatorics and equipartition problems. The classical Borsuk�Ulam theorem for maps

preserving Z2-symmetry has more then �ve hundreds generalizations and speci�cations (cf. [Ste] for a

review of literature). The problem of understanding how large the class of symmetries for which it still

holds has attracted an attention of several authors (cf. [Bar23] [Mar2] for more references). There are

two main reasons behind this substantial amount of interest: applications to questions on multiplicities of

solutions of variational problems with symmetry (e.g. the Ambrosetti�Rabinowitz symmetric mountain

pass theorem; see [Bar2] for a survey of several results) on one hand, and to problems in combinatorics

(e.g. the topological Tveberg theorem [Tve] by Barany, Shlosman, and Szücs [Sar], [Ziv1], the solution

of the necklace problem by Alon and West, the answer to the Kneser conjecture on chromatic number

of the Kneser graph by Lovasz; see [Mat] for further examples) on the other. It has also numerous other
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applications � let us only mention game theory [Sch-Si-Sp-To].

Our aim, however, is to study variants of the Bourgin�Yang theorem and its applications. Up until

now it has been applied neither to combinatorial nor nonlinear problems with symmetry. Especially the

former seems to be potentially very interesting: roughly speaking, if the Borsuk�Ulam theorem implies

a solution of a given problem, then the Bourgin�Yang theorem estimates the size of the set of solutions.

We have already proved the Bourgin�Yang theorem for distinct symmetries (groups), and so we expect

that applications cover many cases.

The following version of the Bourgin�Yang problem has been studied extensively by a few mathe-

maticians. Let G = {1, g1, . . . , gr} be a �nite group, X a G-space, Y any space (not necessarily equipped

with a G-action!) and f : X → Y a map. The task at hand is to estimate the dimension of the set

Af := {x ∈ X | f(x) = f(g1x) = · · · = f(grx)} from below. This can be tackled by a clever use of

the Bourgin�Yang theorem. Most signi�cant results in this direction are due to H. Munkholm [Mun1],

[Mun3] and A. Volovikov [Vol2], [Vol3], [Vol4]. The �rst author studied the case G = Zpk , p an odd

prime, X = S2n−1 equipped with a a free action G-action, and Y = Rm. The second author proved a

related theorem for the p-torus G = (Zp)k. The latter was applied by several authors to problems that

arose from combinatorics ([Vre-Ziv1], [Vre-Ziv3], [Ziv1]), but only with the Borsuk�Ulam conclusion as

the input. Any application which actually uses the full conclusion of the Bourgin�Yang theorem would

be of importance.

All other tasks of this thematic group (1.ii-iv and 1.vi) are classical questions of equivariant topology.

Some of them, e.g. (1.iii), are considered to be hard problems, so that any progress in solving them would

be of importance.

2. A study of topological complexity of spaces with the presence of actions of �nite groups.

As already mentioned, the theory of topological complexity is one of youngest � it was introduced at

the beginning of this century � and most rapidly developing areas of applied topology. Its branch

devoted to the study of �symmetric� topological robotics is even more recent � the �rst paper on the

topic, [Co-Gr], appeared only in 2012. Yet there already are hints that it will gain a signi�cant impetus.

Similarly as ordinary topological complexity is closely related to classical problems in algebraic topology

(e.g. TC of the real projective space RPn is well-known to be equal to the immersion dimension of RPn),
equivariant topological complexity theories provide tools for studying classical topics in transformation

group theory. For example, invariant complexity introduced in [Lu-Mar], combined with earlier results

on the Lusternik�Schnirelmann category theory [Dr-Ka-Ru], [Gom-La-Acu], provides a criterion for a

smooth action of Zp on a sphere to be equivalent with a linear action [Bª-Kal1].

The bottom line is that we strongly believe that it is important for the state of mathematical research

in Poland to be essentially involved in this research area.

The construction of a G-equivariant version of the Reeb graph of a G-invariant smooth function

X → X is of interest because of the study a complexity of a G-action on X, as well as for improved

visualization purposes.

3. A construction of linearization and spectrum of homomorphism of residually nilpotent

group. The importance of the third topic of the project is in its novel approach to the study of group

homomorphisms. Up until now, in geometric group theory more attention has been given to groups
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rather than their homomorphisms, in spite of the fact that the celebrated work of M. Gromov [Gro] which

originated the theory was motivated by a problem that came from the study of homomorphisms. The

notion of the rate of growth of a homomorphism (the logarithmic word growth, cf. [Je-Mar] [Mar-Prz2]

for references) is used in many places, but estimates obtained by it are not optimal in certain geometric

applications. To get a �ner, in fact the best in general, estimate of the asymptotic Nielsen number N∞(f)

or, correspondingly, of topological entropy h(f), of a map f : X → X of a nilmanifold X, the authors

of [JBLe-KBLe], [Je-Mar], [Mar-Prz1] and [Mar-Prz2] used the spectral radius of the full exterior power

∧∗A(φ) of the homomorphism φ = π1(f) : π1(X) → π1(X) induced by f on the fundamental group of

X, and A(φ) a linear map of the linearization of φ. The latter can be de�ned in purely group-theoretic

terms by means of the lower central tower of group. This suggests that its counterpart de�ned in a more

general case would carry some essential information about φ.

4. Geometrically de�ned linear spaces used to obtain geometrically distinct solutions of

variational problems with O(N)-symmetry. The last objective is noteworthy not only as an essential

improvement of earlier results, but also for its signi�cant potential as a new technique. The �rst paper

on the topic has recently been completed and the resulting progress is brie�y described in the �Research

objectives� section above. We plan to apply it to other variational problems with O(N)-symmetry to show

capability of the method. Furthermore, the use of spaces of ρ-interwinding functions [BCM], [Mar4] (i.e.

functions twisted by an irreducible representation of a subgroup of the symmetry group of the domain)

can potentially be applied to show the existence and multiplicity of solutions of PDE variational problems

with large (controlled) nodal set.

Work plan

A substantial part of habitual preparation of research has already been done. Some of the objectives

have been studied in a very recent work of investigators. The results, however, are in varying degrees of

completion. We intend to intensify the �classical way� of mathematical work: looking over the literature,

discussing, presenting results during seminars, taking part in meetings, visiting and hosting domestic and

foreign collaborators, and �nally completing the results and preparing them for publication. We plan to

publish several papers as an e�ect of our study. In the meantime we will present obtained results during

conferences, workshops and invited lectures.

None of the listed topics should have special terms for their realization � we assume parallel work

on all of them. This means that the project does not need a detailed timetable.

Research methodology

Below we list a selection of tools, techniques and theories we will use in order to achieve particular

objectives of this project.

1, i�ii) Equivariant obstruction theory, K∗G-theory, Borel cohomology H∗G(−;Zp), equivariant cohomolo-

gical length with respect to a family of subgroups, direct constructions of G-maps. Localization

theorems for Borel cohomology.

1, iii) Obstruction theory, calculus of Euler classes of vector bundles associated with V and W in various

cohomology theories, e.g. in classical singular cohomology and those mentioned above.
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1, iv) Atiyah�Segal completion and localization theorems in K∗G-theory.

1, v) A methodology is not yet decided in detail.

1, vi) Obstruction theory, direct constructions, theory of representations of �nite groups.

2, i) Equivariant homotopy and homology theories, equivariant Lusternik�Schnirelmann category, theo-

rems on description and classi�cation of �nite group actions on manifolds.

2, ii) Direct construction, known characterizations of invariant functions (Morse functions), properties of

equivariant �ows, description of actions of �nite groups on surfaces.

3, i) De�nition of linearization of homomorphism φ by use of the sequence An(φ) of homomorphisms

induced by φ on the sequence of factors of lower central tower. Elements of the geometric groups

theory and general group theory

3, ii) The rate of growth of group, the rate of growth of homomorphism, generating sequence of power

and exponential series.

4 Linear algebra, certain special subgroups of the orthogonal group O(N), combinatorics of the theory

of partitions of number N into summands, representation theory, variational principles of showing

the existence of critical points by means of the mountain and symmetric mountain pass theorem.
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